
1

Advanced
Computer Architecture

—
Part III: Hardware Security

Trusted Execution Environments

Paolo Ienne
<paolo.ienne@epfl.ch>

2

Outline

1. The Classic Approach to Confidentiality and Integrity
2. The Universal Ingredients of (Hardware) Security Recipes
3. Trusted Computing Base and Trusted Execution Environments
4. Intel Software Guard Extensions (SGX)
5. ARM TrustZone

3

1
The Classic Approach to Confidentiality and Integrity

4

Isolation = Confidentiality and Integrity

Operating system

Device drivers

Semi-privileged code

Applications Ring 3

Ring 2

Ring 1

Ring 0

Virtual Page Offset

Physical Page Offset

Page table

Virtual Memory Processor Privilege Levels

5

Virtual Memory

• The key to isolation across processes is the creation of a memory
indirection
– Processes “speak” in terms of virtual memory addresses (conventional

addresses defined independently per process) and they need
ultimately to be converted into physical addresses (the ones used on
the electrical buses to the memory chips)

– A central trusted entity (e.g., the OS) is charged of the allocation of
these virtual memory addresses and of the translation

– Isolation is achieved by the trusted entity allowing only translations
compliant with the desired isolation property

6

Processor Privilege Levels

• The key to the ability of limiting the possible translations depends on the
existence of processor privilege levels
– Some instructions can be executed only in some privilege levels
– Instructions lowering the privilege level do not need to be restricted to a particular

level: there is no harm in deciding that one can do less
– Critical is the mechanism to raise the privilege level, of course

• Link raising the privilege level to a predefined change in control flow (i.e., some form of jump): if
the privilege level raises, only some specific code can be executed

• Usually in the form of a software exception instruction: raise the privilege and then raise the
exception to execute the exception handler

• If the virtual memory mechanism has been used well to protect the exception handler code,
there is confidence that when the privilege level is high, only the OS can be executing

7

Classic Privilege Levels
• Traditionally, multiple privilege levels (or rings) with varying capabilities tuned to some particular

purposes
• Lower levels (or inner rings) add to the capabilities of levels above (or rings outside)
• In practice, most processors evolved to have only two privilege levels: user mode and kernel mode

(names vary)

Operating System

--

--

Applications Ring 3

Ring 2

Ring 1

Ring 0

Ring 3

Ring 0

8

Virtual Machines (VMs)

• At the turn of the millennium there started to be (renewed) interest in
hosting virtual machines (complete OS and applications) inside another
OS and, in particular, inside a dedicated monitor (hypervisor)

• In particular, full virtualization: run the very same OS and applications in
the virtual machine that one would run on the bare hardware

• Many reasons:
– Consolidation of multiple small machines in a powerful one (lower cost and

energy)
– Flexible deployment (no need to buy a machine upfront)
– Lower dependence from the hardware details (easy to move across servers)
– Better isolation (not processes of the same OS but different OSes)

9

Software-Based Virtualization

• Mostly, the ingredients for process virtualization enable also full virtualization:
– Memory is accessed via TLBs, violations results in exceptions being raised, etc.

• Achieving full virtualization on a CPU not meant for it is challenging:
– If guest OSes need to be isolated, they cannot run all in kernel mode
– But if guest OSes run in user mode, how can they do their job?!

• The classic approach is called trap-and-emulate:
– Guest OS will create exceptions when trying to do its normal job (loading a TLB)
– Hypervisor will check the pertinence and, if appropriate, emulate
– Many key data structures will be replicated (shadow page tables)

• But some instructions simply behave differently in user and kernel mode!
– Dynamic Binary Translation (remember?!...) to rewrite the functionality with user mode

instructions

• VMware achieved full software virtualization in 1999 (its author is not too far away…)

1
0

Hardware-Assisted Virtualization

• Around 2005-06, both AMD and Intel introduced ISA extensions
and hardware support for full virtualization and progressively
extended it
– More privilege levels (Ring -1, Hypervisor)
– Another level of address translation (nested paging) supported by the

hardware page walker
– Interrupt virtualization
– IOMMU virtualization
– …

1
1

Hardware

Hardware

More High-Privilege Levels

Hardware

Operating System

App Ring 3App App

Operating System

App App App

Operating System

App App App

Ring 0

Hypervisor Ring -1

System Management Mode Ring -2

Platform Security Engine Ring -3

1
2

More High-Privilege Levels
– System Management Mode (Ring -2)

• First introduced by Intel and now in all x86 processors
• Guarantee some management functionality in firmware even if the OS or the hypervisor are compromised;

accessible by dedicated interrupts
• Mostly used for power and thermal management or handling hardware errors

– Platform Security Engine (Ring -3)
• Intel’s Management Engine (ME) or AMD’s Platform Secure Processor
• Physical isolation through a piece of hardware independent from the processor

– Power up and down the processor, network connected, reserved main memory, etc.

– Not just more levels but dedicated hardware and physical isolation
• FSM or small processor independent of the main cores

– Intel: ARC (from ARC International, now Synopsys), Quark
– AMD: ARM

– Largely implement security by obscurity

1
3

2
The Universal Ingredients of (Hardware) Security Recipes

1
4

Symmetric-Key Cryptography

• Also called private-key cryptography

• A single secret key (symmetric key), shared by Alice and Bob
• Typically used for confidentiality: without the key, one cannot

read the message
• Typical examples: RC4, DES, 3DES, AES,…

Encrypt Decrypt
01010001010010
10101001110010
10100111010101

1
5

Public-Key Cryptography: Encryption

• Two keys per user, typically generated from a large random
number, one public and one private (secret)

• Can be used for confidentiality as shown above: everyone can
encrypt a message but only Bob has the key to decode it

• Much slower than symmetric encryption

Encrypt Decrypt
01010001010010
10101001110010
10100111010101

Bob’s Public Key Bob’s Private Key

1
6

Public-Key Cryptography: Digital Signature

• Exchanging the order of the keys makes it possible to verify
authenticity: everybody can tell that only Alice could have sent
the message (but only provided one can trust Alice’s public key
to be genuine!)

• Typical examples of public-key algorithms: RSA, ECC,…

Sign Verify
01010001010010
10101001110010
10100111010101

Alice’s Private Key Alice’s Public Key

1
7

One-Way Hash Functions

• Typically used for integrity: it should be impossible to create a
new message or modify one such that it results in the same hash
(also called digest or fingerprint) as the original

• Typical examples: MD5, SHA-2, SHA-3,…

Hash Function 1c0621b59d49b5ff55d80f3bb23a4d8a“A sample message.”

Hash Function 5da26e2e1bbb9c46a252dc4813d06126“A simple message.”

Hash Function d9c2cc6a26a83a7a953979ffb45ed560???

Digests

1
8

Hash Trees (or Merkle Trees)

• Recursive application of one-way hashes on a dataset split in
blocks (file, memory,…)

• Useful to keep hashes up to date in case of local changes: one
needs only to recompute the hash of the block where the
change took place and of the parents

So
ur

ce
: S

ze
fe

r,
20

19

1
9

Random Number Generators

• Main distinction:
– Pseudo-Random Number Generators are algorithms to produce from a

few initial bits (a seed) a deterministic long string of random-looking
numbers

– True Random Number Generators are typically hardware components
which exploit physical phenomena (electrical or thermal noise,
temperature variations, etc.) to generate truly random numbers

• TRNGs are slow, thus often TRNGs generate seeds and PRNG
generate strings of random numbers for practical use

• TRNG can be sensitive to tampering or may provide backdoors

2
0

Physical Unclonable Functions (PUFs)

• Circuits exploiting intrinsic random physical features to produce
a fingerprint uniquely identifying each chip

• Infeasible for the manufacturer to produce a chip with a specific
identifier—as opposed to have the manufacturer write into each
device a specific identifier, such as a serial number (which is also
costly)

• Used today in relatively specific contexts and several
vulnerabilities have been discovered for existing PUFs

2
1

Freshness and Nonces

• In replay attacks, an adversary intercepts a piece of data and
resends it at a later time

• The authenticity and integrity of the message is guaranteed by
the fact that the message was a genuine one once first sent—
what it misses is freshness

• The typical solution is to introduce nonces, that is numbers used
only once during the lifetime of the system: if a message
contains a previously used nonce, it is not fresh

• Nonces can be produced by monotonic counters, for instance

2
2

Homomorphic Encryption

• Form of encryption which allows computing over encrypted
data without access to the secret key

• Ultimate solution to secure remote computation: user ships
encrypted data, they get processed by an untrusted party who
does never see data in clear, and user receives back encrypted
results

• Extremely intellectually appealing idea, but, in practice, today
there is no general solution except for limited families of
computation and with impractical performance overheads

2
3

3
Trusted Computing Base and Trusted Execution Environments

2
4

Trusted Computing Base (TCB)

• The set of trusted hardware and software components which
can be object of an attack

• Important: what is trusted is not necessarily trustworthy!
• The purpose is to separate clearly

1. what is supposed to be trustworthy and simply may not be such
because of bugs or conceptual oversights

from
2. what is clearly untrustworthy and against which the system has been

designed with explicitly defenses

2
5

The Classic TCB

Hardware

Operating System

App Ring 3App App

Operating System

App App App

Operating System

App App App

Ring 0

Hypervisor Ring -1

System Management Mode Ring -2

Platform Security Engine Ring -3

2
6

Surface of Attack

Hardware

Operating System

App Ring 3App App

Operating System

App App App

Operating System

App App App

Ring 0

Hypervisor Ring -1

System Management Mode Ring -2

Platform Security Engine Ring -3

2
7

Make TCB Small!

Hardware

Operating System

App Ring 3App App

Operating System

App App App

Operating System

App App App

Ring 0

Hypervisor Ring -1

System Management Mode Ring -2

Platform Security Engine Ring -3

2
8

Evolving TCB Needs

• TCB evolving also due to new business models
• Cloud users trust their own apps, their own guest OSes, and the processor

manufacturer, but not the cloud operator

Excluded from TCB

2
9

Trusted Processor Chip

• The fact that the cloud operator is not considered trusted means also that not the
whole computer hardware is trusted

Core
$ $

Core
$ $

Core
$ $

$

Uncore

Memory I/O Devices,
Storage, etc.

3
0

Trusted Execution Environments

• Create environment where only protected software resides and executes,
supported by a minimal TCB

AMD Secure Encrypted Virtualization (SEV) Intel Software Guard Extensions (SGX)

Enclave

3
1

Trusted Execution Environments
• The main challenge is to protect the software state of the TEE given the fact that its state is unavoidably

dispersed all over the system and specifically outside of the TCB and inside untrusted software and
hardware components

Core
$ $

Core
$ Regs FUs

$

Uncore

Memory I/O Devices

3
2

Confidentiality through Encryption
• Symmetric encryption ensures confidentiality outside of the processor
• This usually implies hardware encryption/decryption modules at the edge and locally stored keys

Core
$ $

Core
$ Regs FUs

$

Uncore

Memory I/O Devices

K

Encryption

3
3

Confidentiality through Isolation
• Isolation can happen through usual means (page tables, etc.) but memory management cannot be

under the control of untrusted entities
• TEEs and their TCB hardware should be in charge of their own page management

Core
$ $

Core .
$ Regs FUs

$

Uncore

Memory I/O Devices

Page Mgmt

3
4

Confidentiality through State Flushing
• Architectural and microarchitectural state across all parts of the system need to be flushed before

untrusted entities control the system (classic target of side-channel attacks)
• The challenge is to identify all places where there is confidential state

Core
$ $

Core
$ Regs FUs

$

Uncore

Memory I/O Devices

3
5

Integrity through Cryptographic Hashing
• One-way hashing ensures integrity of everything stored outside of the processor
• Again, this usually implies hardware modules at the edge and locally stored nonces and root hashes

Core
$ $

Core .
$ Regs FUs

$

Uncore

Memory I/O Devices

Ctrs+Root

Hashing

3
6

4
Intel Software Guard Extensions (SGX)

3
7

Intel SGX

• Problem: Execute critical software on a remote computer owned and
maintained by an untrusted party, with some integrity and confidentiality
guarantees

• Needs two fundamental properties
– Isolation

• Each secured environment is protected from all other software running on the machine
(including OS, hypervisor, etc. and other secured environments)

– Attestation
• Provide a proof that the software running inside the protected environment is genuine and

untampered

• TCB reduces to the CPU chip (hardware) and the critical code (software)

3
8

Intel SGX
• Data owner trusts the hardware running in a

remote computer operated by an untrusted
infrastructure owner

• The trusted hardware establishes a secure
container (enclave) and supplies the user with a
proof that they are accessing a specific piece of
software running into the enclave

• The data owner uploads encrypted data that
the software in the enclave decrypts and
processes

• The enclave software encrypts the results and
sends them back to the data owner

• The system software of the infrastructure
owner is in charge of managing resources and
devices as in ordinary systems, but has no
access to the code and data of the enclave

So
ur

ce
: C

os
ta

n
an

d
De

va
da

s,
 C

ry
pt

ol
og

y
eP

rin
t,

20
16

3
9

Functionality of an Enclave
1. The remote user launches their untrusted app

Untrusted OS, Hypervisor,…

Untrusted app

4
0

Functionality of an Enclave

Create enclave

⇝Untrusted app Secure enclave

Untrusted OS, Hypervisor,…

1. The remote user launches their untrusted app
2. Untrusted code in the application, through an untrusted OS,

asks SGX to setup the enclave and copy there code and data
from unprotected memory; initial payload is unprotected

4
1

Functionality of an Enclave

Create enclave

⇝Untrusted app Secure enclave

Untrusted OS, Hypervisor,…

1. The remote user launches their untrusted app
2. Untrusted code in the application, through an untrusted OS,

asks SGX to setup the enclave and copy there code and data
from unprotected memory; initial payload is unprotected

3. Once done, the enclave is marked as initialized and the content
is cryptographically hashed into a final measurement hash

4
2

Functionality of an Enclave

Create enclave

⇝Untrusted app Secure enclave

Check!

Untrusted OS, Hypervisor,…

1. The remote user launches their untrusted app
2. Untrusted code in the application, through an untrusted OS,

asks SGX to setup the enclave and copy there code and data
from unprotected memory; initial payload is unprotected

3. Once done, the enclave is marked as initialized and the content
is cryptographically hashed into a final measurement hash

4. The remote user can undergo a software attestation process
to obtain a proof, through the measurement hash, that the
enclave is setup properly

4
3

Functionality of an Enclave

Create enclave

⇝Untrusted app Secure enclave

Decrypt enclave

⇝

Untrusted OS, Hypervisor,…

1. The remote user launches their untrusted app
2. Untrusted code in the application, through an untrusted OS,

asks SGX to setup the enclave and copy there code and data
from unprotected memory; initial payload is unprotected

3. Once done, the enclave is marked as initialized and the content
is cryptographically hashed into a final measurement hash

4. The remote user can undergo a software attestation process
to obtain a proof, through the measurement hash, that the
enclave is setup properly

5. Trusted code in the enclave can now decrypt the payload, now
protected by being inside the enclave

4
4

Untrusted OS, Hypervisor,…

Functionality of an Enclave

Create enclave

⇝Untrusted app Secure enclave

Decrypt enclave

⇝

Run secure code

⇝

1. The remote user launches their untrusted app
2. Untrusted code in the application, through an untrusted OS,

asks SGX to setup the enclave and copy there code and data
from unprotected memory; initial payload is unprotected

3. Once done, the enclave is marked as initialized and the content
is cryptographically hashed into a final measurement hash

4. The remote user can undergo a software attestation process
to obtain a proof, through the measurement hash, that the
enclave is setup properly

5. Trusted code in the enclave can now decrypt the payload, now
protected by being inside the enclave

6. Trusted code in the enclave can be invoked through
mechanism similar to those used to switch to kernel mode

7. Exceptions while executing enclave code are handled by SGX
first (see later) to protect secrets

4
5

Physical Memory Organization
• PRM: Processor Reserved Memory = pages reserved by SGX for enclaves

– Defined in the BIOS, adjacent power-of-two area of physical memory
• EPC: Enclave Page Cache = pages allocated by SGX for enclaves

– Allocated by kernel or hypervisor, encrypted in hardware with keys generated at boot time
• EPCM: Enclave Page Cache Map = metadata of each EPC page such as valid, owner, etc.

– Inside the processor, fixed size, limits the maximum EPC size (e.g., 128 MB)

Entry
Entry

Entry
Entry
Entry

4 kB page
4 kB page

4 kB page
4 kB page
4 kB page

DRAM

PRM

PRM

EPC

EPCEPCM

off-chipon-chip

valid,
page type,

owner enclave,
etc.

4
6

EPC Isolation

• If enclave access:
– Address in EPC?  “Address in the page table?”
– Check EPCM  “Check page table metadata”

• Nothing really surprising: the classic job of
the OS or hypervisor now done at the
physical page level by the hardware (special
instructions, etc.)

• OS code replaced by processor firmware
• Smallest TCB
• Security by obscurity?

– Nobody is supposed to change the firmware
– Nobody is supposed to see or understand the

firmware

Memory Access

So
ur

ce
: v

an
 D

ijk
, U

co
nn

CS
E-

50
95

, 2
01

7

4
7

EPC Management Pages
• Most pages in EPC are code or data of the enclaves
• Some pages are reserved for SGX management

– SGX Enclave Control Structure (SECS) pages: enclave attributes, hashes for
attestations, etc.

– Thread Control Structure (TCS) pages: allow multiple threads to execute
the enclave code concurrently

• These pages are neither accessible to hypervisors, OSs, etc. nor to the
enclave code itself, only to SGX

Exceptions
• On an exception during the execution of enclave code, SGX dumps the

state in EPC pages linked to the TCS and restores the application state
(thus hiding the enclave state to the application), before executing the
exception handler

• Again, a bit more of the classic kernel job shifted into the processor (a
pre-handler part of SGX)

Entry
Entry

Entry
Entry
Entry

Regular page
SECS page

Regular page
TCS page

SECS page

EPCEPCM

on-chip off-chip

4
8

Memory Encryption and Integrity

• EPC pages are encrypted by a hardware
Memory Encryption Engine (MEE) so
that no snooping or Coldboot attacks
can succeed

• MEE works at the resolution of cache
lines (512 bits)

• MEE encrypts every piece of data in a
protected region of untrusted memory
but also spontaneously maintains an
integrity tree in untrusted memory

• The root of the integrity tree is stored
in protected memory inside the
hardware TBC (processor chip)

So
ur

ce
: G

ue
ro

n,
 C

ry
pt

ol
og

y
eP

rin
t,

20
16

4
9

EPC Swapping

• But EPC is only a limited-size cache: enclave pages may need to be
swapped out to non-EPC memory
– Non-EPC memory is unsecure and replay attacks may happen

• On EPC swap out:
– EPC page is decrypted
– EPC page is encrypted again with versioning information to ensure freshness and

signed to check for integrity, and saved to non-EPC memory together with 128 byte
of metadata

– Versioning information is saved in dedicated EPC management pages

• On EPC swap in:
– Complementary actions

5
0

Principle of the Memory Integrity Tree
• Tagx is the digest of data D0 together with

nonce n0x

• Tag0x is the digest of nonces n00-n04 together
with n1x

• The tree root nonce is secure because stored in
memory internal to the processor

• Read and verify:
1. All tags can be computed independently and in

any order
2. If any check failed, integrity compromised

• Write and update:
1. Preemptive check to avoid replay attacks
2. Update, increment nonces, and recompute tags
3. Write tags

So
ur

ce
: G

ue
ro

n,
 C

ry
pt

ol
og

y
eP

rin
t,

20
16

5
1

MEE Actual Data Structure
• Same principle but 8-ary tree with everything organized in 512-bit

cache lines and packed appropriately
• Everything accessible with simple hardware friendly bit-shift

operations
• A memory region of 128 MB contains

– 96 MB of protected data (efficiency = 3/4)
– 24 MB of metadata (nonces and tags = 1/8 data + 1/8 data)
– 1.5 MB of tree’s L0 (= 1/8 of metadata)
– 192 kB of tree’s L1 (= 1/8 of L0)
– 24 kB of tree’s L2 (= 1/8 of L1)
– Waste for the alignment
– 3kB of tree’s L3 (= 1/8 of L2)  in SRAM

• MEE performance overhead around 2-14%

So
ur

ce
: G

ue
ro

n,
 C

ry
pt

ol
og

y
eP

rin
t,

20
16

5
2

Root of Trust

• Security requires many different cryptographic keys for multiple purposes
– Private and public keys for authentication
– Secret keys for confidentiality
– Keys for integrity checks

• Some can be random and ephemeral (e.g., for encrypting data into DRAM) 
generated at boot

• Most need to depend on a something unique and persistent: a root of trust key stored
in the processor and accessible only to the TCB
– Root Provisioning Key (RPK), stored by Intel
– Root Sealing Key (RSK), that Intel declares to erase after manufacturing

• Classic security issues: Public Key Infrastructure, Certificate Authority, revocation,
etc.

5
3

5
ARM TrustZone

5
4

ARM TrustZone

• A very different system from Intel SGX
• The basic business model and market is very different: ARM

does not build chips but licenses Intellectual Property; many
customers only license the architecture and build the processor
themselves (e.g., Apple)

• TrustZone is a collection of hardware mechanisms which
conceptually partition a system and its resources in a secure
and a nonsecure world

5
5

ARM TrustZone

• Mainly about isolation
– Hardware: an additional bit in the AMBA AXI bus protocol informs the

system components (e.g., caches) and peripherals of accesses within
the secure world

• Hardware TCB is essentially the chip (components either handle securely
accesses as appropriate or are trusted to refuse secure requests)

– Software: partitioned in two parts with a special monitor to transition
between them

• Software TCB is the software in the trusted part

• Only one TEE per system (vs. multiple enclaves in Intel SGX)

5
6

Extended Privilege and Memory Isolation

• Essentially, introduces a secure/nonsecure partition mode orthogonal to the classic
privilege levels (Thread/Handler)
– Fairly classic register banking and duplications—e.g., four copies of register R13 (stack pointer)

instead of only two

• Memory split in three classes
– Secure and Nonsecure
– Secure but callable from nonsecure code (a special API is responsible of the return to the

nonsecure world)

• Hardware Attribution Units and Protection Controllers intercept addresses to
memory and raise exceptions in case of violation
– Much simpler than SGX enclave accesses, but conceptually similar
– Limited number of secure regions (e.g., eight)

5
7

Calling Restrictions
• Branching into nonsecure callable region checks that the first instruction at the destination is a Secure

Gateway (SG) instruction which sets the processor in secure mode; special branch instructions to
return from secure to nonsecure

• The nonsecure callable region is a bridge to call secure code, not callable directly
• Alternatively, the more classic privileged instruction Secure Monitor Call (SMC) jumps into the monitor

5
8

Hardware View

• System components receive a special AXI
bit as a sort of extension of the address
and can thus be TrustZone-aware (in red
on the figure)

• Some busses omit the TrustZone secure bit
in the bus address (in orange on the
figure)

• Since there is no ARM chip but only some
architectural definitions, the security
properties depend on the actual system
design on the ARM licensee and on the
details of all components So

ur
ce

: C
os

ta
n

an
d

De
va

da
s,

 C
ry

pt
ol

og
y

eP
rin

t,
20

16

5
9

Software View

• The secure world contains several necessary components
– A trusted boot loader (hardware reset  secure mode)
– A small trusted OS
– A monitor to switch back and forth from the nonsecure world
– Security critical applications

• The secure monitor has unrestricted access to the nonsecure world
• ARM provides reference implementations of secure firmware inclusive of

secure boot services and the secure monitor
• No security by obscurity on the software side (at least not from ARM, but

probably quite a bit by the system designers)

6
0

So
ur

ce
: C

os
ta

n
an

d
De

va
da

s,
 C

ry
pt

ol
og

y
eP

rin
t,

20
16

6
1

Conclusions
• There is definitely no magic one-stop solution for all security troubles
• Rather, we see an enormous variety on what TEEs are and what they are expected to protect from (=

huge variety of quickly evolving business needs)
• The sole clear and sound motto appears to be “reduce the attack surface to the bare minimum”
• Focus appears to be mostly in glorified versions of classic isolation mechanisms and classic security

protocols (e.g., attestation schemes), but also in some new unconventional features (e.g., memory
encryption and integrity in SGX)

• The apparent complexity of some of these solutions seems alone and by itself a form of fragility
(disclaimer: uninformed personal opinion)

• Commercial systems show very little or no protection from advanced microarchitectural and physical
side-channel attacks

• Still a new and quickly evolving aspect of computer architecture which will need some time to reach
maturity and some form of standardization

6
2

References
General
• J. Szefer, Principles of Secure Processor Architecture Design, Synthesis Lectures on Computer Architecture, Morgan & Claypool,

2019

Intel Software Guard Extensions (SGX)
• V. Costan and S. Devadas, Intel SGX Explained, Cryptology ePrint Archive, Report 2016:086, 2016
• S. Gueron, A Memory Encryption Engine Suitable for General Purpose Processors, Cryptology ePrint Archive, Report 2016:204,

2016

ARM TrustZone
• S. Pinto and N. Santos. Demystifying ARM TrustZone: A Comprehensive Survey. ACM Computing Surveys, volume 51, article 130,

January 2019

	Advanced�Computer Architecture�—�Part III: Hardware Security�Trusted Execution Environments
	Outline
	1
	Isolation = Confidentiality and Integrity
	Virtual Memory
	Processor Privilege Levels
	Classic Privilege Levels
	Virtual Machines (VMs)
	Software-Based Virtualization
	Hardware-Assisted Virtualization
	More High-Privilege Levels
	More High-Privilege Levels
	2
	Symmetric-Key Cryptography
	Public-Key Cryptography: Encryption�
	Public-Key Cryptography: Digital Signature�
	One-Way Hash Functions
	Hash Trees (or Merkle Trees)�
	Random Number Generators
	Physical Unclonable Functions (PUFs)
	Freshness and Nonces
	Homomorphic Encryption
	3
	Trusted Computing Base (TCB)
	The Classic TCB
	Surface of Attack
	Make TCB Small!
	Evolving TCB Needs
	Trusted Processor Chip
	Trusted Execution Environments
	Trusted Execution Environments
	Confidentiality through Encryption
	Confidentiality through Isolation
	Confidentiality through State Flushing
	Integrity through Cryptographic Hashing
	4
	Intel SGX
	Intel SGX
	Functionality of an Enclave
	Functionality of an Enclave
	Functionality of an Enclave
	Functionality of an Enclave
	Functionality of an Enclave
	Functionality of an Enclave
	Physical Memory Organization
	EPC Isolation
	EPC Management Pages
	Memory Encryption and Integrity
	EPC Swapping
	Principle of the Memory Integrity Tree
	MEE Actual Data Structure
	Root of Trust
	5
	ARM TrustZone
	ARM TrustZone
	Extended Privilege and Memory Isolation
	Calling Restrictions
	Hardware View
	Software View
	Slide Number 60
	Conclusions
	References

