Advanced
Computer Architecture

Part lll: Hardware Security
Trusted Execution Environments

Paolo lenne

<paolo.ienne@epfl.ch>

A e

Outline

The Classic Approach to Confidentiality and Integrity

The Universal Ingredients of (Hardware) Security Recipes
Trusted Computing Base and Trusted Execution Environments
Intel Software Guard Extensions (SGX)

ARM TrustZone

The Classic Approach to Confidentiality and Integrity

Isolation = Confidentiality and Integrity

Virtual Memory Processor Privilege Levels
Applications Ring 3
Virtual Page | Offset |
Semi-privileged code Ring 2
Page table
T | Device drivers Ring 1

Physical Page Offset
Operating system Ring 0

Virtual Memory

* The key to isolation across processes is the creation of a memory
indirection

— Processes “speak” in terms of virtual memory addresses (conventional
addresses defined independently per process) and they need
ultimately to be converted into physical addresses (the ones used on
the electrical buses to the memory chips)

— A central trusted entity (e.g., the OS) is charged of the allocation of
these virtual memory addresses and of the translation

— Isolation is achieved by the trusted entity allowing only translations
compliant with the desired isolation property

Processor Privilege Levels

* The key to the ability of limiting the possible translations depends on the
existence of processor privilege levels

— Some instructions can be executed only in some privilege levels

— Instructions lowering the privilege level do not need to be restricted to a particular
level: there is no harm in deciding that one can do less

— Critical is the mechanism to raise the privilege level, of course

 Link raising the privilege level to a predefined change in control flow (i.e., some form of jump): if
the privilege level raises, only some specific code can be executed

e Usually in the form of a software exception instruction: raise the privilege and then raise the
exception to execute the exception handler

* If the virtual memory mechanism has been used well to protect the exception handler code,
there is confidence that when the privilege level is high, only the OS can be executing

Classic Privilege Levels

Traditionally, multiple privilege levels (or rings) with varying capabilities tuned to some particular

purposes

Lower levels (or inner rings) add to the capabilities of levels above (or rings outside)
In practice, most processors evolved to have only two privilege levels: user mode and kernel mode

(names vary)

Applications

Ring 3 Ring 3

Ring 2

Ring 1

Operating System Ring O

Virtual Machines (VMs)

* At the turn of the millennium there started to be (renewed) interest in
hosting virtual machines (complete OS and applications) inside another
OS and, in particular, inside a dedicated monitor (hypervisor)

* In particular, full virtualization: run the very same OS and applications in
the virtual machine that one would run on the bare hardware
* Many reasons:

— Consolidation of multiple small machines in a powerful one (lower cost and
energy)

— Flexible deployment (no need to buy a machine upfront)

— Lower dependence from the hardware details (easy to move across servers)

— Better isolation (not processes of the same OS but different OSes)

Software-Based Virtualization

Mostly, the ingredients for process virtualization enable also full virtualization:
— Memory is accessed via TLBs, violations results in exceptions being raised, etc.
Achieving full virtualization on a CPU not meant for it is challenging:
— If guest OSes need to be isolated, they cannot run all in kernel mode

— But if guest OSes run in user mode, how can they do their job?!

The classic approach is called trap-and-emulate:
— Guest OS will create exceptions when trying to do its normal job (loading a TLB)
— Hypervisor will check the pertinence and, if appropriate, emulate
— Many key data structures will be replicated (shadow page tables)

But some instructions simply behave differently in user and kernel mode!

— Dynamic Binary Translation (remember?!...) to rewrite the functionality with user mode
instructions

VMware achieved full software virtualization in 1999 (its author is not too far away...)

Hardware-Assisted Virtualization

 Around 2005-06, both AMD and Intel introduced ISA extensions
and hardware support for full virtualization and progressively
extended it
— More privilege levels (Ring -1, Hypervisor)

— Another level of address translation (nested paging) supported by the
nardware page walker

— Interrupt virtualization
— IOMMU virtualization

More High-Privilege Levels

App App App App App App App App App | Ring 3
Operating System Operating System Operating System Ring 0
Hypervisor Ring -1

Ring -2

Platform Security Engine Ring -3

Hardware

More High-Privilege Levels

System Management Mode (Ring -2)
* Firstintroduced by Intel and now in all x86 processors

* Guarantee some management functionality in firmware even if the OS or the hypervisor are compromised;
accessible by dedicated interrupts

* Mostly used for power and thermal management or handling hardware errors
Platform Security Engine (Ring -3)
* Intel’s Management Engine (ME) or AMD’s Platform Secure Processor
* Physical isolation through a piece of hardware independent from the processor
— Power up and down the processor, network connected, reserved main memory, etc.
Not just more levels but dedicated hardware and physical isolation

* FSM or small processor independent of the main cores

— Intel: ARC (from ARC International, now Synopsys), Quark
— AMD: ARM

Largely implement security by obscurity

The Universal Ingredients of (Hardware) Security Recipes

Symmetric-Key Cryptography

Also called private-key cryptography
01010001010010

—>| Encrypt I— 10101001110010 —>| Decrypt |—>

I 10100111010101 1

Alice ﬁ ﬁ Bob

A single secret key (symmetric key), shared by Alice and Bob

Typically used for confidentiality: without the key, one cannot
read the message

Typical examples: RC4, DES, 3DES, AES,...

Public-Key Cryptography: Encryption

01010001010010
—>| Encrypt I— 10101001110010 —>| Decrypt |—>
10100111010101 I
Alice ﬁ Bob
Bob’s Public Key Bob’s Private Key

* Two keys per user, typically generated from a large random
number, one public and one private (secret)

* Can be used for confidentiality as shown above: everyone can
encrypt a message but only Bob has the key to decode it

* Much slower than symmetric encryption

Public-Key Cryptography: Digital Signature

01010001010010

—>| Sign |—10101001110010—>| Verify |—>
I 10100111v< I

Bob

Alice ﬁ

Alice’s Private Key Alice’s Public Key

Exchanging the order of the keys makes it possible to verify
authenticity: everybody can tell that only Alice could have sent
the message (but only provided one can trust Alice’s public key

to be genuine!)
Typical examples of public-key algorithms: RSA, ECC,...

One-Way Hash Functions

Digests

“A sample message.” }H‘ —>| Hash Function |—> 1c0621b59d49b5ff55d80f3bb23a4d8a
”Asfimple message.” >'I |< —>| Hash Function I—» 5da26e2e1bbb9c46a252dc4813d06126

>.| I< 4—| Hash Function |<— d9c2cc6a26a83a7a953979ffb45ed560

* Typically used for integrity: it should be impossible to create a
new message or modify one such that it results in the same hash
(also called digest or fingerprint) as the original

* Typical examples: MD5, SHA-2, SHA-3,...

2?7

Hash Trees (or Merkle Trees)
A

R¥{ot Node
HR =h (}II’ HZ)

Hash Node Node
H1=/7615]J(BJ,32) H2=bas B3,B4)

Data Data ata Data
Block By Block B, Blgck B3 Block B,

Source: Szefer, 2019

* Recursive application of one-way hashes on a dataset split in
blocks (file, memory,...)

* Useful to keep hashes up to date in case of local changes: one
needs only to recompute the hash of the block where the
change took place and of the parents

Random Number Generators

e Main distinction:

— Pseudo-Random Number Generators are algorithms to produce from a
few initial bits (a seed) a deterministic long string of random-looking
numbers

— True Random Number Generators are typically hardware components
which exploit physical phenomena (electrical or thermal noise,
temperature variations, etc.) to generate truly random numbers

* TRNGs are slow, thus often TRNGs generate seeds and PRNG
generate strings of random numbers for practical use

* TRNG can be sensitive to tampering or may provide backdoors

Physical Unclonable Functions (PUFs)

e Circuits exploiting intrinsic random physical features to produce
a fingerprint uniquely identifying each chip

* Infeasible for the manufacturer to produce a chip with a specific
identifier—as opposed to have the manufacturer write into each

device a specific identifier, such as a serial number (which is also
costly)

e Used today in relatively specific contexts and several
vulnerabilities have been discovered for existing PUFs

Freshness and Nonces

In replay attacks, an adversary intercepts a piece of data and
resends it at a later time

The authenticity and integrity of the message is guaranteed by
the fact that the message was a genuine one once first sent—
what it misses is freshness

The typical solution is to introduce nonces, that is numbers used
only once during the lifetime of the system: if a message
contains a previously used nonce, it is not fresh

Nonces can be produced by monotonic counters, for instance

Homomorphic Encryption

* Form of encryption which allows computing over encrypted
data without access to the secret key

e Ultimate solution to secure remote computation: user ships
encrypted data, they get processed by an untrusted party who
does never see data in clear, and user receives back encrypted
results

* Extremely intellectually appealing idea, but, in practice, today
there is no general solution except for limited families of
computation and with impractical performance overheads

Trusted Computing Base and Trusted Execution Environments

Trusted Computing Base (TCB)

* The set of trusted hardware and software components which
can be object of an attack

* Important: what is trusted is not necessarily trustworthy!

* The purpose is to separate clearly

1. what is supposed to be trustworthy and simply may not be such
because of bugs or conceptual oversights

from

2. what is clearly untrustworthy and against which the system has been
designed with explicitly defenses

The Classic TCB

p:“ App ‘_‘ App H App App App App App | Ring3

!
: -A‘-—A-—b| Operating System Ring 0
' I

1
Ap

>
T

» | Operating System
Ring -1

System Management Mode Ring -2

Platform Security Engine Ring -3

P

|

|
Hypervisor

Hardware

Surface of Attack

App App App App App App M
The] ZI-— |-
) _H """ — 4 ‘ A l
— .

Hardware

>
T
g

App | Ring 3

Operating System

S
UQ
|_\

S
Ga
w

gEEEEEEEEEEEEEEEEEE NN NN ENEEEEEEEEEN

'Illllllk.llllwllllbll’
=
UQ
N

Make TCB Small!

App App App App App App M App | Ring 3

y = \/
Dperating System Operating System W E stem Ring 0
I' Hypervisor ‘ Ring -1

Ring -2

Platforin Sece 1 £ngine Ring -3

Hardware

Evolving TCB Needs

* TCB evolving also due to new business models

* Cloud users trust their own apps, their own guest OSes, and the processor
manufacturer, but not the cloud operator

A
App App App App App App | Ring3 ﬁ E App App App App App App App | Ring 3
| Operating System I Operating System Operating System Ring 0 Operating System Operating System Operating System Ring 0

Hypervisor / \ Ring -1

Hypervisor Ring -1

Ring -2

Platform Security Engine Ring -3

N
Platform Security Engine ‘ Ring -3

Hardware

Hardware

Excluded from TCB

Trusted Processor Chip

* The fact that the cloud operator is not considered trusted means also that not the
whole computer hardware is trusted

Core

5

Uncore

Memor 1/0 Devices,
y Storage, etc.

Trusted Execution Environments

* Create environment where only protected software resides and executes,
supported by a minimal TCB

Enclave
App App App App App App | Ring3 ﬂ e App App App App App App App | Ring 3
I Operating System | Operating System Operating System Ring 0 Operating System Operating System Operating System Ring 0
Hypervisor Ring -1 Hypervisor Ring -1
Ring -2 Ring -2
Platform Security Engine Ring -3 Platform Security Engine Ring -3

Hardware Hardware

AMD Secure Encrypted Virtualization (SEV) Intel Software Guard Extensions (SGX)

Trusted Execution Environments

 The main challenge is to protect the software state of the TEE given the fact that its state is unavoidably
dispersed all over the system and specifically outside of the TCB and inside untrusted software and
hardware components

$ |

|/O Devices

Confidentiality through Encryption

* Symmetric encryption ensures confidentiality outside of the processor
* This usually implies hardware encryption/decryption modules at the edge and locally stored keys

| S |

I Uncore I

Encryption

|/O Devices

Confidentiality through Isolation

* |solation can happen through usual means (page tables, etc.) but memory management cannot be
under the control of untrusted entities

 TEEs and their TCB hardware should be in charge of their own page management

S |

|/O Devices

Confidentiality through State Flushing

* Architectural and microarchitectural state across all parts of the system need to be flushed before
untrusted entities control the system (classic target of side-channel attacks)

* The challenge is to identify all places where there is confidential state

S |

|/O Devices

Integrity through Cryptographic Hashing

* One-way hashing ensures integrity of everything stored outside of the processor
* Again, this usually implies hardware modules at the edge and locally stored nonces and root hashes

| S |

I Uncore I

Hashing

|/O Devices

Intel Software Guard Extensions (SGX)

Intel SGX

Problem: Execute critical software on a remote computer owned and
maintained by an untrusted party, with some integrity and confidentiality

guarantees
Needs two fundamental properties

— Isolation

* Each secured environment is protected from all other software running on the machine
(including OS, hypervisor, etc. and other secured environments)

— Attestation
* Provide a proof that the software running inside the protected environment is genuine and
untampered

TCB reduces to the CPU chip (hardware) and the critical code (software)

Intel SGX

Data owner trusts the hardware runningin a
remote computer operated by an untrusted
infrastructure owner

The trusted hardware establishes a secure
container (enclave) and supplies the user with a
proof that they are accessing a specific piece of
software running into the enclave

The data owner uploads encrypted data that
the software in the enclave decrypts and
processes

The enclave software encrypts the results and
sends them back to the data owner

The system software of the infrastructure
owner is in charge of managing resources and
devices as in ordinary systems, but has no
access to the code and data of the enclave

i Data Owner’s E i Remote Computer |
 Computer l | i
i i i| Trusted Hardware |;
i i i|| Untrusted Software |[:
| | i |
1 | Computation i i|| Secure Container i
i | Dispatcher) i e
: : Setup ' Public Loader :
i Set i Computation 1 |
i etu) i . :
' P : . : Private Code :
i i Receive | :
i|| Verification |[+— Encrypted — . .
:) Reéﬁts | Private Data !
s o — |
t | !
Owns
Trusts Authors Manages
Trusts
Data Owner Software Infrastructure
Provider Owner

\

Builds

S

Manufacturer

f

Trusts

Source: Costan and Devadas, Cryptology ePrint, 2016

1.

Functionality of an Enclave

The remote user launches their untrusted app

Untru] pd app

Untrusted OS, Hypervisor,...

Functionality of an Enclave

The remote user launches their untrusted app

Untrusted code in the application, through an untrusted OS,
asks SGX to setup the enclave and copy there code and data
from unprotected memory; initial payload is unprotected

Untrusted app Secure enclave

Create enclave

Untrusted OS, Hypervisor,...

Functionality of an Enclave

The remote user launches their untrusted app

Untrusted code in the application, through an untrusted OS,
asks SGX to setup the enclave and copy there code and data
from unprotected memory; initial payload is unprotected

Once done, the enclave is marked as initialized and the content
is cryptographically hashed into a final measurement hash

Untrusted app Secure enclave

Create enclave

Untrusted OS, Hypervisor,...

Functionality of an Enclave che

5

Securd Ihclave

The remote user launches their untrusted app Untrusted app

Untrusted code in the application, through an untrusted OS,
asks SGX to setup the enclave and copy there code and data
from unprotected memory; initial payload is unprotected

Create enclave

Once done, the enclave is marked as initialized and the content
is cryptographically hashed into a final measurement hash

The remote user can undergo a software attestation process
to obtain a proof, through the measurement hash, that the
enclave is setup properly

Untrusted OS, Hypervisor,...

Functionality of an Enclave

The remote user launches their untrusted app

Untrusted code in the application, through an untrusted OS,
asks SGX to setup the enclave and copy there code and data
from unprotected memory; initial payload is unprotected

Once done, the enclave is marked as initialized and the content
is cryptographically hashed into a final measurement hash

The remote user can undergo a software attestation process
to obtain a proof, through the measurement hash, that the
enclave is setup properly

Trusted code in the enclave can now decrypt the payload, now
protected by being inside the enclave

Untrusted app

Secure enclave

Create enclave

g

Decrypt enclave

Untrusted OS, Hypervisor,...

Functionality of an Enclave

The remote user launches their untrusted app

Untrusted code in the application, through an untrusted OS,
asks SGX to setup the enclave and copy there code and data
from unprotected memory; initial payload is unprotected

Once done, the enclave is marked as initialized and the content
is cryptographically hashed into a final measurement hash

The remote user can undergo a software attestation process
to obtain a proof, through the measurement hash, that the
enclave is setup properly

Trusted code in the enclave can now decrypt the payload, now
protected by being inside the enclave

Trusted code in the enclave can be invoked through
mechanism similar to those used to switch to kernel mode

Exceptions while executing enclave code are handled by SGX
first (see later) to protect secrets

Untrusted app

Secure enclave

Create enclave

g

Decrypt enclave

Run secure code

Untrusted OS, Hypervisor,...

Physical Memory Organization

* PRM: Processor Reserved Memory = pages reserved by SGX for enclaves

— Defined in the BIOS, adjacent power-of-two area of physical memory

* EPC: Enclave Page Cache = pages allocated by SGX for enclaves

— Allocated by kernel or hypervisor, encrypted in hardware with keys generated at boot time

« EPCM: Enclave Page Cache Map = metadata of each EPC page such as valid, owner, etc.

— Inside the processor, fixed size, limits the maximum EPC size (e.g., 128 MB)

on-chip

EPCM

Entry

valid, /I)ﬂ Entry
page type, | Entry

owner enclave,
etc.

Entry

Entry

4 kB page

*
*
.
.
*
*
.
*
*
.
*
*
“
.

off-Fhip
EPC PRM DRAM
4 kB page]
4 kB page [EPC Il
4 kB page PRM
4kBpage H 4|,

EPC Isolation

If enclave access:

— Address in EPC? = “Address in the page table?”
— Check EPCM > “Check page table metadata”

Non-Enclave °

e Nothing really surprising: the classic job of
the OS or hypervisor now done at the
physical page level by the hardware (special

Replace instructions, etc.)
Address

i * OS code replaced by processor firmware
* Smallest TCB
e Security by obscurity?

— Nobody is supposed to change the firmware

Memory Access

Linear i gt Physical
Address Traditional Address Enclave No
IA Page Table ACCesS?
Checks

Enclave Yes
Access

.

No

Yes Allow
> Memory
Access

Source: van Dijk, Uconn CSE-5095, 2017

— Nobody is supposed to see or understand the
firmware

EPC Management Pages

Most pages in EPC are code or data of the enclaves

Some pages are reserved for SGX management

— SGX Enclave Control Structure (SECS) pages: enclave attributes, hashes for
attestations, etc.
— Thread Control Structure (TCS) pages: allow multiple threads to execute
the enclave code concurrently
These pages are neither accessible to hypervisors, OSs, etc. nor to the
enclave code itself, only to SGX

Exceptions

On an exception during the execution of enclave code, SGX dumps the
state in EPC pages linked to the TCS and restores the application state
(thus hiding the enclave state to the application), before executing the
exception handler

Again, a bit more of the classic kernel job shifted into the processor (a
pre-handler part of SGX)

on-chip

EPCM

off-.chip

Entry

Entry

Entry

Entry

Entry

EPC

SECS page
TCS page

Regular page

SECS page |
Regular page |

Memory Encryption and Integrity

Trust boundary perimeter

EPC pages are encrypted by a hardware
Memory Encryption Engine (MEE) so oo G (SR sosge

that no snooping or Coldboot attacks .
can succeed ; 3 2
MEE works at the resolution of cache ‘% rSeziZ:r? = ?ﬂ
lines (512 bits) |) \\ ; = ;‘9;
MEE encrypts every piece of data in a - % §
protected region of untrusted memory Lewen g § z 5
but also spontaneously maintains an Sl nte tranacions t he s rgion) é% % ;
integrity tree in untrusted memory = . — 3
Encrypted transactions to the Protected region ~ "~. S o
The root of the integrity tree is stored el et regons 128

in protected memory inside the
hardware TBC (processor chip)

EPC Swapping

 But EPCis only a limited-size cache: enclave pages may need to be
swapped out to non-EPC memory
— Non-EPC memory is unsecure and replay attacks may happen

* On EPC swap out:

— EPC page is decrypted

— EPC page is encrypted again with versioning information to ensure freshness and
signed to check for integrity, and saved to non-EPC memory together with 128 byte
of metadata

— Versioning information is saved in dedicated EPC management pages

* OnEPCswapin:

— Complementary actions

Principle of the Memory Integrity Tree

Tagx is the digest of data DO together with

nonce nOx Root
TagOx is the digest of nonces n00-n04 together (Intemalistarage) ©
—i
with nLx om0 | :
The tree root nonce |S secure because Stored in ... L10 §
memory internal to the processor :%
O
Read and verify: Level 0 2
A } 5
1. All tags can be computed independently and in — noo || no1 || no2 || nos | < |itagoo S
any order I [L""_ 5
()
2. If any check failed, integrity compromised Tago 8
(]
Write and update:
(@)
1. Preemptive check to avoid replay attacks "’
2. Update, increment nonces, and recompute tags

Tag3
3. Write tags

MEE Actual Data Structure

* Same principle but 8-ary tree with everything organized in 512-bit
cache lines and packed appropriately

Metadata __________+__.J__I

I I I 8 x 56-bit counters: | I I

L L 56-bit | Po_Tago | PD_Tagl | PD_Tag2 | PD_Tag3 | PD_Tag4 | PD_Tags | PD_Tagé | PD_Tag? |
H | cntr?7 H | cntr6 H | cntr5 H | cntrd H | cntr3 n | cntr2 H | cntrl H | cntrO | A
x X L L) L) A Lt

T Protected T
fg data

A | |

* Everything accessible with simple hardware friendly bit-shift Lﬁﬂf | [37] n% [ns | n34 | 33 | n32 | w31 | n30 | |
i ©
operations | | | “ | §
. A memory region of 128 MB contains Level 2 | [rag20 | n20 [n2t [n22 [n23 [n2a [n2s | n26 | n27 | -
— 96 MB of protected data (efficiency = 3/4) T | =

ntegrity

— 24 MB of metadata (nonces and tags = 1/8 data + 1/8 data) Tree | | %
— 1.5 MB of tree’s LO (= 1/8 of metadata) Level 1 | 2810 | ni0 | ni1 | n12 | n13 | n14 | ni5s | ni6 | ni7 | | cZﬁ
— 192 kB of tree’s L1 (= 1/8 of LO) | 4_9
— 24 kBoftree’s L2 (=1/8 of L1) y | o
] Level 0 | tago0 | noo | no1 | no2 | no3 | noa | nos | no6 | no7 | =
— Waste for the alignment 4 | g e - U\
— 3kB of tree’s L3 (= 1/8 of L2) © in SRAM 5
R R R e e s e e e (]
* MEE performance overhead around 2-14% | Tree-covered region | S
| I Tagl | verQ | verl | ver2 | ver3 | verd | vers | verb | very I (D
8
S
o
)

I Protected Data CL (ciphertext) I

56-bit counters ﬂ Counter
56-bit tags

1 bit (unused) 7 bits | 56 bits

Internal field layout

Root of Trust

Security requires many different cryptographic keys for multiple purposes
— Private and public keys for authentication
— Secret keys for confidentiality
— Keys for integrity checks

Some can be random and ephemeral (e.g., for encrypting data into DRAM) >
generated at boot

Most need to depend on a something unique and persistent: a root of trust key stored
in the processor and accessible only to the TCB

— Root Provisioning Key (RPK), stored by Intel

— Root Sealing Key (RSK), that Intel declares to erase after manufacturing

Classic security issues: Public Key Infrastructure, Certificate Authority, revocation,
etc.

ARM TrustZone

ARM TrustZone

* Avery different system from Intel SGX

* The basic business model and market is very different: ARM
does not build chips but licenses Intellectual Property; many
customers only license the architecture and build the processor
themselves (e.g., Apple)

 TrustZone is a collection of hardware mechanisms which
conceptually partition a system and its resources in a secure
and a nonsecure world

ARM TrustZone

 Mainly about isolation

— Hardware: an additional bit in the AMBA AXI bus protocol informs the
system components (e.g., caches) and peripherals of accesses within
the secure world

 Hardware TCB is essentially the chip (components either handle securely
accesses as appropriate or are trusted to refuse secure requests)

— Software: partitioned in two parts with a special monitor to transition
between them

» Software TCB is the software in the trusted part

* Only one TEE per system (vs. multiple enclaves in Intel SGX)

Extended Privilege and Memory Isolation

Essentially, introduces a secure/nonsecure partition mode orthogonal to the classic

privilege levels (Thread/Handler)

— Fairly classic register banking and duplications—e.g., four copies of register R13 (stack pointer)
instead of only two

Memory split in three classes

— Secure and Nonsecure

— Secure but callable from nonsecure code (a special APl is responsible of the return to the
nonsecure world)

Hardware Attribution Units and Protection Controllers intercept addresses to

memory and raise exceptions in case of violation

— Much simpler than SGX enclave accesses, but conceptually similar

— Limited number of secure regions (e.g., eight)

Calling Restrictions

Branching into nonsecure callable region checks that the first instruction at the destination is a Secure
Gateway (SG) instruction which sets the processor in secure mode; special branch instructions to
return from secure to nonsecure

The nonsecure callable region is a bridge to call secure code, not callable directly
Alternatively, the more classic privileged instruction Secure Monitor Call (SMC) jumps into the monitor

Non-secure
Branch Branch

</> Code

</> Code

>
€
]
]
Q
-
=
o
9
3
O
Q
9p]

=
(0]
-
s
®
0
-
—
Q,
Q,
<

Return

Hardware View

e System components receive a special AXI

bit as a sort of extension of the address System-on-Chip Package S o
and can thus be TrustZone-aware (in red —— S
1 e | with E

on the figure) SrAM | [Processor | 4G Modem! | | secure 5
] . : without | Extensions -

Some busses omit the TrustZone secure bit Bo0t ROM | [——— || Secure | DMA ' g
' . TZMA | || Extensions Controller |1 L2 Cache S
in the bus address (in on the l ————— A —— [| S
. AMBA AXI On-Chip Bus U\
figure) | g
. . . 3 Cache Real-Time oTP AXI to APB -(3
Since there is no ARM chip but only some —L— Clock || Polyfuses || Bridge 3
: . . | | o
architectural definitions, the security —— APB Bus ®
properties depend on the actual system] z
Memory Memory Display Keypad @)

design on the ARM ||Censee and on the Controller | | Controlier | | Controtter | [APC/PAC| | controller 8
i | | | | | >
details of all components DRAM Flash Display Audio Keypad A

Software View

The secure world contains several necessary components

— A trusted boot loader (hardware reset = secure mode)
— A small trusted OS

— A monitor to switch back and forth from the nonsecure world
— Security critical applications

The secure monitor has unrestricted access to the nonsecure world

ARM provides reference implementations of secure firmware inclusive of
secure boot services and the secure monitor

No security by obscurity on the software side (at least not from ARM, but
probably quite a bit by the system designers)

Attack TrustZone TPM TPM+TXT SGX XOM Aegis Bastion Ascend, Sanctum
Phantom
Malicious N/A (secure N/A (The whole N/A (Does not Access checks on |dentifier tag Security kernel Access checks OS separates Access checks
containers (direct |world is trusted) computer is one allow concurrent TLB misses checks separates on each containers on TLB misses
probing) container) containers) containers memory access
Malicious OS Access checks N/A (OS Host OS Access checks on OS has its own Security kernel Memory X Access checks
(direct probing) [on TLB misses measured and preempted during TLB misses identifier measured and encryption and on TLB misses
trusted) late launch isolated HMAC
Malicious Access checks N/A (Hypervisor Hypervisor Access checks on N/A (No N/A (No Hypervisor N/A (No Access checks
hypervisor (direct|on TLB misses measured and preempted during TLB misses hypervisor hypervisor measured and hypervisor on TLB misses
probing) trusted) late launch support) support) trusted support)
Malicious N/A (firmware is CPU microcode SINIT ACM signed SMM handler is N/A (Firmware N/A (Firmware Hypervisor N/A (Firmware Firmware is
firmware a part of the measures PEl by Intel key and subject to TLB is not active is not active measured after is not active measured and
secure world) firmware measured access checks after booting) after booting) boot after booting) trusted
Malicious N/A (secure N/A (Does not N/A (Does not X X X X X Each enclave
containers (cache|world is trusted) allow concurrent allow concurrent its gets own
timing) containers) containers) cache partition
Malicious OS Secure world N/A (OS Host OS X N/A (Paging not X X X Per-enclave
(page fault has own page measured and preempted during supported) page tables
recording) tables trusted) late launch
Malicious OS X N/A (OS Host OS X X X X X Non-enclave
ticache timing) measured and preempted during software uses a
— trusted) late launch separate cache
partition
DMA from On-chip bus X IOMMU bounces IOMMU bounces Equivalentto Equivalentto Equivalent to Equivalentto MC bounces
malicious bounces secure DMA into TXT DMA into PRM physical DRAM physical DRAM physical DRAM physical DRAM DMA outside
peripheral world accesses memory range access access access access allowed range
Physical DRAM [Secure world X X Undocumented DRAM DRAM DRAM DRAM X
read limited to on- memory encryption encryption encryption encryption encryption
chip SRAM engine
Physical DRAM [Secure world X X Undocumented HMAC of HMAC of Merkle tree over HMAC of X
write limited to on- memory encryption address and address, data, DRAM address, data,
chip SRAM engine data timestamp timestamp
Physical DRAM |Secure world X X Undocumented X Merkle tree Merkle tree over Merkle tree X
roliback write limited to on- memory encryption over HMAC DRAM over HMAC
chip SRAM engine timestamps timestamps
Physical DRAM | Secure world in X X X X X X ORAM X
address reads on-chip SRAM
Hardware TCB |CPU chip Motherboard Motherboard CPU chip package CPU chip CPU chip CPU chip CPU chip CPU chip
size package (CPU, TPM, (CPU, TPM, package package package package package
DRAM, buses) DRAM, buses)
Software TCB Secure world All software on SINIT ACM + VM Application module Application Application Application Application Application
size (firmware, OS, the computer (O3S, application) + privileged module + module + module + process + module +
application) containers hypervisor security kernel hypervisor trusted OS security monitor

Source: Costan and Devadas, Cryptology ePrint, 2016

Conclusions

There is definitely no magic one-stop solution for all security troubles

Rather, we see an enormous variety on what TEEs are and what they are expected to protect from (=
huge variety of quickly evolving business needs)

The sole clear and sound motto appears to be “reduce the attack surface to the bare minimum”

Focus appears to be mostly in glorified versions of classic isolation mechanisms and classic security
protocols (e.g., attestation schemes), but also in some new unconventional features (e.g., memory
encryption and integrity in SGX)

The apparent complexity of some of these solutions seems alone and by itself a form of fragility
(disclaimer: uninformed personal opinion)

Commercial systems show very little or no protection from advanced microarchitectural and physical
side-channel attacks

Still a new and quickly evolving aspect of computer architecture which will need some time to reach
maturity and some form of standardization

References

General

»). Szefer, Principles of Secure Processor Architecture Design, Synthesis Lectures on Computer Architecture, Morgan & Claypool,
2019

Intel Software Guard Extensions (SGX)
* V. Costan and S. Devadas, Intel SGX Explained, Cryptology ePrint Archive, Report 2016:086, 2016

* S. Gueron, A Memory Encryption Engine Suitable for General Purpose Processors, Cryptology ePrint Archive, Report 2016:204,
2016

ARM TrustZone

e S.Pinto and N. Santos. Demystifying ARM TrustZone: A Comprehensive Survey. ACM Computing Surveys, volume 51, article 130,
January 2019

	Advanced�Computer Architecture�—�Part III: Hardware Security�Trusted Execution Environments
	Outline
	1
	Isolation = Confidentiality and Integrity
	Virtual Memory
	Processor Privilege Levels
	Classic Privilege Levels
	Virtual Machines (VMs)
	Software-Based Virtualization
	Hardware-Assisted Virtualization
	More High-Privilege Levels
	More High-Privilege Levels
	2
	Symmetric-Key Cryptography
	Public-Key Cryptography: Encryption�
	Public-Key Cryptography: Digital Signature�
	One-Way Hash Functions
	Hash Trees (or Merkle Trees)�
	Random Number Generators
	Physical Unclonable Functions (PUFs)
	Freshness and Nonces
	Homomorphic Encryption
	3
	Trusted Computing Base (TCB)
	The Classic TCB
	Surface of Attack
	Make TCB Small!
	Evolving TCB Needs
	Trusted Processor Chip
	Trusted Execution Environments
	Trusted Execution Environments
	Confidentiality through Encryption
	Confidentiality through Isolation
	Confidentiality through State Flushing
	Integrity through Cryptographic Hashing
	4
	Intel SGX
	Intel SGX
	Functionality of an Enclave
	Functionality of an Enclave
	Functionality of an Enclave
	Functionality of an Enclave
	Functionality of an Enclave
	Functionality of an Enclave
	Physical Memory Organization
	EPC Isolation
	EPC Management Pages
	Memory Encryption and Integrity
	EPC Swapping
	Principle of the Memory Integrity Tree
	MEE Actual Data Structure
	Root of Trust
	5
	ARM TrustZone
	ARM TrustZone
	Extended Privilege and Memory Isolation
	Calling Restrictions
	Hardware View
	Software View
	Slide Number 60
	Conclusions
	References

