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1
The Classic Approach to Confidentiality and Integrity
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Isolation = Confidentiality and Integrity
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Virtual Memory

• The key to isolation across processes is the creation of a memory 
indirection
– Processes “speak” in terms of virtual memory addresses (conventional 

addresses defined independently per process) and they need 
ultimately to be converted into physical addresses (the ones used on 
the electrical buses to the memory chips)

– A central trusted entity (e.g., the OS) is charged of the allocation of 
these virtual memory addresses and of the translation

– Isolation is achieved by the trusted entity allowing only translations 
compliant with the desired isolation property
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Processor Privilege Levels

• The key to the ability of limiting the possible translations depends on the 
existence of processor privilege levels
– Some instructions can be executed only in some privilege levels
– Instructions lowering the privilege level do not need to be restricted to a particular 

level: there is no harm in deciding that one can do less
– Critical is the mechanism to raise the privilege level, of course

• Link raising the privilege level to a predefined change in control flow (i.e., some form of jump): if 
the privilege level raises, only some specific code can be executed

• Usually in the form of a software exception instruction: raise the privilege and then raise the 
exception to execute the exception handler

• If the virtual memory mechanism has been used well to protect the exception handler code, 
there is confidence that when the privilege level is high, only the OS can be executing
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Classic Privilege Levels
• Traditionally, multiple privilege levels (or rings) with varying capabilities tuned to some particular 

purposes
• Lower levels (or inner rings) add to the capabilities of levels above (or rings outside)
• In practice, most processors evolved to have only two privilege levels: user mode and kernel mode 

(names vary)
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Virtual Machines (VMs)

• At the turn of the millennium there started to be (renewed) interest in 
hosting virtual machines (complete OS and applications) inside another 
OS and, in particular, inside a dedicated monitor (hypervisor)

• In particular, full virtualization: run the very same OS and applications in 
the virtual machine that one would run on the bare hardware

• Many reasons:
– Consolidation of multiple small machines in a powerful one (lower cost and 

energy)
– Flexible deployment (no need to buy a machine upfront)
– Lower dependence from the hardware details (easy to move across servers)
– Better isolation (not processes of the same OS but different OSes)
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Software-Based Virtualization

• Mostly, the ingredients for process virtualization enable also full virtualization:
– Memory is accessed via TLBs, violations results in exceptions being raised, etc.

• Achieving full virtualization on a CPU not meant for it is challenging:
– If guest OSes need to be isolated, they cannot run all in kernel mode
– But if guest OSes run in user mode, how can they do their job?!

• The classic approach is called trap-and-emulate:
– Guest OS will create exceptions when trying to do its normal job (loading a TLB)
– Hypervisor will check the pertinence and, if appropriate, emulate
– Many key data structures will be replicated (shadow page tables)

• But some instructions simply behave differently in user and kernel mode!
– Dynamic Binary Translation (remember?!...) to rewrite the functionality with user mode 

instructions

• VMware achieved full software virtualization in 1999 (its author is not too far away…)
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Hardware-Assisted Virtualization

• Around 2005-06, both AMD and Intel introduced ISA extensions 
and hardware support for full virtualization and progressively 
extended it
– More privilege levels (Ring -1, Hypervisor)
– Another level of address translation (nested paging) supported by the 

hardware page walker
– Interrupt virtualization
– IOMMU virtualization
– …
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More High-Privilege Levels
– System Management Mode (Ring -2)

• First introduced by Intel and now in all x86 processors
• Guarantee some management functionality in firmware even if the OS or the hypervisor are compromised; 

accessible by dedicated interrupts
• Mostly used for power and thermal management or handling hardware errors

– Platform Security Engine (Ring -3)
• Intel’s Management Engine (ME) or AMD’s Platform Secure Processor
• Physical isolation through a piece of hardware independent from the processor

– Power up and down the processor, network connected, reserved main memory, etc.

– Not just more levels but dedicated hardware and physical isolation
• FSM or small processor independent of the main cores

– Intel: ARC (from ARC International, now Synopsys), Quark 
– AMD: ARM

– Largely implement security by obscurity
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2
The Universal Ingredients of (Hardware) Security Recipes



1
4

Symmetric-Key Cryptography

• Also called private-key cryptography

• A single secret key (symmetric key), shared by Alice and Bob
• Typically used for confidentiality: without the key, one cannot 

read the message
• Typical examples: RC4, DES, 3DES, AES,…

Encrypt Decrypt
01010001010010
10101001110010
10100111010101
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Public-Key Cryptography: Encryption

• Two keys per user, typically generated from a large random 
number, one public and one private (secret)

• Can be used for confidentiality as shown above: everyone can 
encrypt a message but only Bob has the key to decode it

• Much slower than symmetric encryption

Encrypt Decrypt
01010001010010
10101001110010
10100111010101

Bob’s Public Key Bob’s Private Key



1
6

Public-Key Cryptography: Digital Signature

• Exchanging the order of the keys makes it possible to verify 
authenticity: everybody can tell that only Alice could have sent 
the message (but only provided one can trust Alice’s public key 
to be genuine!)

• Typical examples of public-key algorithms: RSA, ECC,…

Sign Verify
01010001010010
10101001110010
10100111010101

Alice’s Private Key Alice’s Public Key
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One-Way Hash Functions

• Typically used for integrity: it should be impossible to create a 
new message or modify one such that it results in the same hash 
(also called digest or fingerprint) as the original

• Typical examples: MD5, SHA-2, SHA-3,…

Hash Function 1c0621b59d49b5ff55d80f3bb23a4d8a“A sample message.”

Hash Function 5da26e2e1bbb9c46a252dc4813d06126“A simple message.”

Hash Function d9c2cc6a26a83a7a953979ffb45ed560???

Digests
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Hash Trees (or Merkle Trees)

• Recursive application of one-way hashes on a dataset split in 
blocks (file, memory,…)

• Useful to keep hashes up to date in case of local changes: one 
needs only to recompute the hash of the block where the 
change took place and of the parents
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Random Number Generators

• Main distinction:
– Pseudo-Random Number Generators are algorithms to produce from a 

few initial bits (a seed) a deterministic long string of random-looking 
numbers

– True Random Number Generators are typically hardware components 
which exploit physical phenomena (electrical or thermal noise, 
temperature variations, etc.) to generate truly random numbers

• TRNGs are slow, thus often TRNGs generate seeds and PRNG 
generate strings of random numbers for practical use

• TRNG can be sensitive to tampering or may provide backdoors
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Physical Unclonable Functions (PUFs)

• Circuits exploiting intrinsic random physical features to produce 
a fingerprint uniquely identifying each chip

• Infeasible for the manufacturer to produce a chip with a specific 
identifier—as opposed to have the manufacturer write into each 
device a specific identifier, such as a serial number (which is also 
costly)

• Used today in relatively specific contexts and several 
vulnerabilities have been discovered for existing PUFs
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Freshness and Nonces

• In replay attacks, an adversary intercepts a piece of data and 
resends it at a later time

• The authenticity and integrity of the message is guaranteed by 
the fact that the message was a genuine one once first sent—
what it misses is freshness

• The typical solution is to introduce nonces, that is numbers used 
only once during the lifetime of the system: if a message 
contains a previously used nonce, it is not fresh

• Nonces can be produced by monotonic counters, for instance



2
2

Homomorphic Encryption

• Form of encryption which allows computing over encrypted 
data without access to the secret key

• Ultimate solution to secure remote computation: user ships 
encrypted data, they get processed by an untrusted party who 
does never see data in clear, and user receives back encrypted 
results

• Extremely intellectually appealing idea, but, in practice, today 
there is no general solution except for limited families of 
computation and with impractical performance overheads
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3
Trusted Computing Base and Trusted Execution Environments
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Trusted Computing Base (TCB)

• The set of trusted hardware and software components which 
can be object of an attack

• Important: what is trusted is not necessarily trustworthy!
• The purpose is to separate clearly

1. what is supposed to be trustworthy and simply may not be such 
because of bugs or conceptual oversights

from
2. what is clearly untrustworthy and against which the system has been 

designed with explicitly defenses
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The Classic TCB
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Surface of Attack

Hardware

Operating System

App Ring 3App App

Operating System

App App App

Operating System

App App App

Ring 0

Hypervisor Ring -1

System Management Mode Ring -2

Platform Security Engine Ring -3



2
7

Make TCB Small!
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Evolving TCB Needs

• TCB evolving also due to new business models
• Cloud users trust their own apps, their own guest OSes, and the processor 

manufacturer, but not the cloud operator

Excluded from TCB
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Trusted Processor Chip

• The fact that the cloud operator is not considered trusted means also that not the 
whole computer hardware is trusted 

Core
$ $
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Trusted Execution Environments

• Create environment where only protected software resides and executes, 
supported by a minimal TCB

AMD Secure Encrypted Virtualization (SEV) Intel Software Guard Extensions (SGX) 

Enclave
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Trusted Execution Environments
• The main challenge is to protect the software state of the TEE given the fact that its state is unavoidably 

dispersed all over the system and specifically outside of the TCB and inside untrusted software and 
hardware components

Core
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Confidentiality through Encryption
• Symmetric encryption ensures confidentiality outside of the processor
• This usually implies hardware encryption/decryption modules at the edge and locally stored keys

Core
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Confidentiality through Isolation
• Isolation can happen through usual means (page tables, etc.) but memory management cannot be 

under the control of untrusted entities
• TEEs and their TCB hardware should be in charge of their own page management

Core
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$
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Memory I/O Devices

Page Mgmt



3
4

Confidentiality through State Flushing
• Architectural and microarchitectural state across all parts of the system need to be flushed before 

untrusted entities control the system (classic target of side-channel attacks)
• The challenge is to identify all places where there is confidential state

Core
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$
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Integrity through Cryptographic Hashing
• One-way hashing ensures integrity of everything stored outside of the processor
• Again, this usually implies hardware modules at the edge and locally stored nonces and root hashes

Core
$ $
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$
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4
Intel Software Guard Extensions (SGX)
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Intel SGX

• Problem: Execute critical software on a remote computer owned and 
maintained by an untrusted party, with some integrity and confidentiality 
guarantees

• Needs two fundamental properties
– Isolation

• Each secured environment is protected from all other software running on the machine 
(including OS, hypervisor, etc. and other secured environments)

– Attestation
• Provide a proof that the software running inside the protected environment is genuine and 

untampered

• TCB reduces to the CPU chip (hardware) and the critical code (software)
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Intel SGX
• Data owner trusts the hardware running in a 

remote computer operated by an untrusted 
infrastructure owner

• The trusted hardware establishes a secure 
container (enclave) and supplies the user with a 
proof that they are accessing a specific piece of 
software running into the enclave

• The data owner uploads encrypted data that 
the software in the enclave decrypts and 
processes

• The enclave software encrypts the results and 
sends them back to the data owner

• The system software of the infrastructure 
owner is in charge of managing resources and 
devices as in ordinary systems, but has no 
access to the code and data of the enclave
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Functionality of an Enclave
1. The remote user launches their untrusted app

Untrusted OS, Hypervisor,…

Untrusted app
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Functionality of an Enclave

Create enclave

⇝Untrusted app Secure enclave

Untrusted OS, Hypervisor,…

1. The remote user launches their untrusted app
2. Untrusted code in the application, through an untrusted OS, 

asks SGX to setup the enclave and copy there code and data 
from unprotected memory; initial payload is unprotected
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Functionality of an Enclave

Create enclave

⇝Untrusted app Secure enclave

Untrusted OS, Hypervisor,…

1. The remote user launches their untrusted app
2. Untrusted code in the application, through an untrusted OS, 

asks SGX to setup the enclave and copy there code and data 
from unprotected memory; initial payload is unprotected

3. Once done, the enclave is marked as initialized and the content 
is cryptographically hashed into a final measurement hash
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Functionality of an Enclave

Create enclave

⇝Untrusted app Secure enclave

Check!

Untrusted OS, Hypervisor,…

1. The remote user launches their untrusted app
2. Untrusted code in the application, through an untrusted OS, 

asks SGX to setup the enclave and copy there code and data 
from unprotected memory; initial payload is unprotected

3. Once done, the enclave is marked as initialized and the content 
is cryptographically hashed into a final measurement hash

4. The remote user can undergo a software attestation process 
to obtain a proof, through the measurement hash, that the 
enclave is setup properly
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Functionality of an Enclave

Create enclave

⇝Untrusted app Secure enclave

Decrypt enclave

⇝

Untrusted OS, Hypervisor,…

1. The remote user launches their untrusted app
2. Untrusted code in the application, through an untrusted OS, 

asks SGX to setup the enclave and copy there code and data 
from unprotected memory; initial payload is unprotected

3. Once done, the enclave is marked as initialized and the content 
is cryptographically hashed into a final measurement hash

4. The remote user can undergo a software attestation process 
to obtain a proof, through the measurement hash, that the 
enclave is setup properly

5. Trusted code in the enclave can now decrypt the payload, now 
protected by being inside the enclave
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Untrusted OS, Hypervisor,…

Functionality of an Enclave

Create enclave

⇝Untrusted app Secure enclave

Decrypt enclave

⇝

Run secure code

⇝

1. The remote user launches their untrusted app
2. Untrusted code in the application, through an untrusted OS, 

asks SGX to setup the enclave and copy there code and data 
from unprotected memory; initial payload is unprotected

3. Once done, the enclave is marked as initialized and the content 
is cryptographically hashed into a final measurement hash

4. The remote user can undergo a software attestation process 
to obtain a proof, through the measurement hash, that the 
enclave is setup properly

5. Trusted code in the enclave can now decrypt the payload, now 
protected by being inside the enclave

6. Trusted code in the enclave can be invoked through 
mechanism similar to those used to switch to kernel mode

7. Exceptions while executing enclave code are handled by SGX 
first (see later) to protect secrets
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Physical Memory Organization
• PRM: Processor Reserved Memory = pages reserved by SGX for enclaves

– Defined in the BIOS, adjacent power-of-two area of physical memory
• EPC: Enclave Page Cache = pages allocated by SGX for enclaves

– Allocated by kernel or hypervisor, encrypted in hardware with keys generated at boot time
• EPCM: Enclave Page Cache Map = metadata of each EPC page such as valid, owner, etc.

– Inside the processor, fixed size, limits the maximum EPC size (e.g., 128 MB)

Entry
Entry

Entry
Entry
Entry

4 kB page
4 kB page

4 kB page
4 kB page
4 kB page

DRAM

PRM

PRM

EPC

EPCEPCM

off-chipon-chip

valid,
page type,

owner enclave,
etc.
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EPC Isolation

• If enclave access:
– Address in EPC?  “Address in the page table?”
– Check EPCM  “Check page table metadata”

• Nothing really surprising: the classic job of 
the OS or hypervisor now done at the 
physical page level by the hardware (special 
instructions, etc.)

• OS code replaced by processor firmware
• Smallest TCB
• Security by obscurity?

– Nobody is supposed to change the firmware
– Nobody is supposed to see or understand the 

firmware

Memory Access
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EPC Management Pages
• Most pages in EPC are code or data of the enclaves
• Some pages are reserved for SGX management

– SGX Enclave Control Structure (SECS) pages: enclave attributes, hashes for 
attestations, etc.

– Thread Control Structure (TCS) pages: allow multiple threads to execute 
the enclave code concurrently

• These pages are neither accessible to hypervisors, OSs, etc. nor to the 
enclave code itself, only to SGX

Exceptions
• On an exception during the execution of enclave code, SGX dumps the 

state in EPC pages linked to the TCS and restores the application state 
(thus hiding the enclave state to the application), before executing the 
exception handler

• Again, a bit more of the classic kernel job shifted into the processor (a 
pre-handler part of SGX)

Entry
Entry

Entry
Entry
Entry

Regular page
SECS page

Regular page
TCS page

SECS page

EPCEPCM

on-chip off-chip
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Memory Encryption and Integrity

• EPC pages are encrypted by a hardware 
Memory Encryption Engine (MEE) so 
that no snooping or Coldboot attacks 
can succeed

• MEE works at the resolution of cache 
lines (512 bits)

• MEE encrypts every piece of data in a 
protected region of untrusted memory 
but also spontaneously maintains an 
integrity tree in untrusted memory

• The root of the integrity tree is stored 
in protected memory inside the 
hardware TBC (processor chip)
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EPC Swapping

• But EPC is only a limited-size cache: enclave pages may need to be 
swapped out to non-EPC memory
– Non-EPC memory is unsecure and replay attacks may happen

• On EPC swap out:
– EPC page is decrypted
– EPC page is encrypted again with versioning information to ensure freshness and 

signed to check for integrity, and saved to non-EPC memory together with 128 byte 
of metadata

– Versioning information is saved in dedicated EPC management pages

• On EPC swap in:
– Complementary actions
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Principle of the Memory Integrity Tree
• Tagx is the digest of data D0 together with 

nonce n0x

• Tag0x is the digest of nonces n00-n04 together 
with n1x

• The tree root nonce is secure because stored in 
memory internal to the processor

• Read and verify:
1. All tags can be computed independently and in 

any order
2. If any check failed, integrity compromised

• Write and update:
1. Preemptive check to avoid replay attacks
2. Update, increment nonces, and recompute tags
3. Write tags
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MEE Actual Data Structure
• Same principle but 8-ary tree with everything organized in 512-bit 

cache lines and packed appropriately
• Everything accessible with simple hardware friendly bit-shift 

operations
• A memory region of 128 MB contains

– 96 MB of protected data (efficiency = 3/4)
– 24 MB of metadata (nonces and tags = 1/8 data + 1/8 data)
– 1.5 MB of tree’s L0 (= 1/8 of metadata) 
– 192 kB of tree’s L1 (= 1/8 of L0)
– 24 kB of tree’s L2 (= 1/8 of L1)
– Waste for the alignment
– 3kB of tree’s L3 (= 1/8 of L2)  in SRAM

• MEE performance overhead around 2-14%
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Root of Trust

• Security requires many different cryptographic keys for multiple purposes
– Private and public keys for authentication
– Secret keys for confidentiality
– Keys for integrity checks

• Some can be random and ephemeral (e.g., for encrypting data into DRAM) 
generated at boot

• Most need to depend on a something unique and persistent: a root of trust key stored 
in the processor and accessible only to the TCB
– Root Provisioning Key (RPK), stored by Intel
– Root Sealing Key (RSK), that Intel declares to erase after manufacturing

• Classic security issues: Public Key Infrastructure, Certificate Authority, revocation, 
etc.
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ARM TrustZone
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ARM TrustZone

• A very different system from Intel SGX
• The basic business model and market is very different: ARM 

does not build chips but licenses Intellectual Property; many 
customers only license the architecture and build the processor 
themselves (e.g., Apple)

• TrustZone is a collection of hardware mechanisms which 
conceptually partition a system and its resources in a secure 
and a nonsecure world
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ARM TrustZone

• Mainly about isolation
– Hardware: an additional bit in the AMBA AXI bus protocol informs the 

system components (e.g., caches) and peripherals of accesses within 
the secure world

• Hardware TCB is essentially the chip (components either handle securely 
accesses as appropriate or are trusted to refuse secure requests)

– Software: partitioned in two parts with a special monitor to transition 
between them

• Software TCB is the software in the trusted part

• Only one TEE per system (vs. multiple enclaves in Intel SGX)
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Extended Privilege and Memory Isolation

• Essentially, introduces a secure/nonsecure partition mode orthogonal to the classic 
privilege levels (Thread/Handler)
– Fairly classic register banking and duplications—e.g., four copies of register R13 (stack pointer) 

instead of only two

• Memory split in three classes
– Secure and Nonsecure
– Secure but callable from nonsecure code (a special API is responsible of the return to the 

nonsecure world)

• Hardware Attribution Units and Protection Controllers intercept addresses to 
memory and raise exceptions in case of violation
– Much simpler than SGX enclave accesses, but conceptually similar
– Limited number of secure regions (e.g., eight)
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Calling Restrictions
• Branching into nonsecure callable region checks that the first instruction at the destination is a Secure 

Gateway (SG) instruction which sets the processor in secure mode; special branch instructions to 
return from secure to nonsecure

• The nonsecure callable region is a bridge to call secure code, not callable directly
• Alternatively, the more classic privileged instruction Secure Monitor Call (SMC) jumps into the monitor
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Hardware View

• System components receive a special AXI 
bit as a sort of extension of the address 
and can thus be TrustZone-aware (in red
on the figure)

• Some busses omit the TrustZone secure bit 
in the bus address (in orange on the 
figure)

• Since there is no ARM chip but only some 
architectural definitions, the security 
properties depend on the actual system 
design on the ARM licensee and on the 
details of all components So
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Software View

• The secure world contains several necessary components
– A trusted boot loader (hardware reset  secure mode)
– A small trusted OS
– A monitor to switch back and forth from the nonsecure world
– Security critical applications

• The secure monitor has unrestricted access to the nonsecure world
• ARM provides reference implementations of secure firmware inclusive of 

secure boot services and the secure monitor
• No security by obscurity on the software side (at least not from ARM, but 

probably quite a bit by the system designers)
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Conclusions
• There is definitely no magic one-stop solution for all security troubles
• Rather, we see an enormous variety on what TEEs are and what they are expected to protect from (= 

huge variety of quickly evolving business needs)
• The sole clear and sound motto appears to be “reduce the attack surface to the bare minimum”
• Focus appears to be mostly in glorified versions of classic isolation mechanisms and classic security 

protocols (e.g., attestation schemes), but also in some new unconventional features (e.g., memory 
encryption and integrity in SGX)

• The apparent complexity of some of these solutions seems alone and by itself a form of fragility
(disclaimer: uninformed personal opinion)

• Commercial systems show very little or no protection from advanced microarchitectural and physical 
side-channel attacks

• Still a new and quickly evolving aspect of computer architecture which will need some time to reach 
maturity and some form of standardization
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